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LETTER TO THE EDITOR 

The dimension of turbulence 

Greg Hubert and Preben AlstrBmt'$ 
7 Center for Polymer Studies, and Department of Physics, Boston University, Boston. M A  
02215, USA + Physics Laboratory, HC 0rsted Instilute, 2100 Copenhagen 0, Denmark 

Received I I  March 1991 

Abstract. We suggest a scenario for turbulence where the fractal dimension D increase 
with Reynolds number: D = 2  a t  the onset of turbulence, and D - 3  at large Reynolds 
number. The picture is based on a new random-cascade model where the length scales of 
active eddies are randomly charen from a probability distribution P ( r )  of length-scale 
ratios. Exact expressions for the exponents associated with the velocity field are derived 
for the distributions P( r )  = ( y C  l ) r 7 .  Our picture provides a quantitative explanation for 
recent meilsurements of pipe and grid Row at the onset of turbulence. 

Perhaps the most intriguing phenomenon in turbulence is the occurrence of an energy 
cascade from an  initial length scale I , ,  to smaller and smaller length scales. To describe 
this behaviour, Kolmogorov [l]  proposed a scaling theory for fully developed tur- 
bulence with a uniform energy transfer E. Based on the assumption that turbulence is 
>pcl.&-,,,,,,n& I, ,,IC crr'mgc 111 vc,ucrry "\,I ""GI a,, d L L t " 5  cuuy "1 S I L C  # was >L,"W,L L U  

scale, 
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with exponent h =f .  However, as pointed out by Mandelbrot [2], turbulence is not 
necessarily space-filling-the active eddies may decay in volume, leaving a fractal set 
of singulanties with a fractal dimension D C 3 .  

Considerations like those above have led to various scaling theories for turbulence. 
Among theseis the so-called p-model [3], where one posits the (arbitrary) length scales 

I. = i02-" (2) 
and defines 0 as the factor by which the volume of the active eddies is contracted 
when energy is transferred from scale !i to scale I ; + :  : The number N .  of eddies 2! 

scale I, is N. =p"li/I' and this relates p to the fractal dimension 0, 

log2 p = D - 3 (3) 

N" - I,". (4) 

where D is defined by 

The energy transfer is E = p"u' . / l , ,  where U,- U(/,) is the velocity difference over an 
active eddy at 'level' n. Assuming E to be constant, it follows that 

h = f (  D -2).  (5 )  

t Mathematically speaking. turbulence here refers totheset of singular point softhe Navier-Stokesequations. 
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Recently, Tong and Goldburg [4] have measured the characteristic velocity 
difference u ( l )  by photon-correlation homodyne spectroscopy and determined the 
exponent h for the turbulent flow. The measurements were carried out for both a pipe 
and grid flow, in the regime of small Reynolds number at the onset of turbulence. The 
resulting values of h as function of the Reynolds number are shown in figure 1. h 
increases from the value h = 0 obtained at the critical Reynolds number signaling the 
onset of turbulence, Re = Re,, to the Kolmogorov value h = 4 at large Reynolds number. 
In terms of the dimension D (equation ( 5 ) ) ,  this corresponds to an increase from 
D = 2 at the Re = Re,, to D = 3 for fully developed turbulence-the turbulence becomes 
more and more space filling. For the p-model, the change of D from 2 to 3 corresponds 
to an increase of p from f to 1. It is not clear, though, how and why p should depend 
on the Reynolds number. 

In this letter we propose a new cascade model with the aim to understand the 
changing dimensionality of turbulence. Our picture arises from a natural concern 
regarding the p-model; namely, its reliance on a fixed and arbitrary length-scale ratio 
r =  / “ / I n - ,  = f  (cf equation (2)) between an eddy and its ‘mother’ eddy. What happens 
if this ratio is not constant-if r can take on different values, r ( i ) ,  for each eddy i? 
To analyse this situation, we study a model where every active eddy splits into m 
smaller eddies with length scales chosen according to a probability distribution P ( r )  
of length-scale ratios r (given by the dynamics). We shall show that D and h increase 
with m ;  the greater the splitting of active eddies, the more turbulence fills space. 
Therefore, one scenario at the onset of turbulence is that m increases with increasing 
Reynolds number. As Re increases, the dissipation scale I ,  decreases, and this allows 
the formation of smaller eddies and thereby permits a larger value of m. The basic 
idea is a maximum-entropy principle: An acfiue eddy splits into as many active eddies 
as possible, giuen fhe dynamically fixed disfribufion P ( r ) .  We shall elaborate on this 
point and find a relation between m and Re. 

”’- I 

Y 
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(Re-Re,)/Re, 
Figure 1. Velocity-field exponent h obtained from homodyne spectroscopy for various 
values or the Reynolds number Re (reference [4]). (0) Pipe flow, Re.=2160 (0) Grid 
flow, Re,=263. Also shown are the theoretical h(Re) curves for v = i  (m,=4.1809) ---I. 
and y = i  (m,=3.6946) (-4. 
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Assume that every eddy of size / ( i )  splits into m eddies of sizes / l ( i ) ,  /2(i) .  . . . , b ( i ) .  
The length-scale ratios r;(i) = b ( i ) / / ( i ) ( j  = 1,2,. . . , m )  are chosen independently and 
at random, according to a given probability distribution P ( r ) .  For P ( r )  = 8 ( r - i ) ,  we 
have the @-model (with /3 = m / S ) .  To assure a decreasing volume, only a choice of 
r , ( i ) ,  r 2 ( i ) ,  . . . , r , ( i )  within the supersphere S given by 

r : ( i ) +  r : ( i ) + .  . .+I),( i )  s 1 ( 6 )  

is acceptedt. The probability density P (  r )  for a set r = ( r I ,  r2,  . . . , r,) of length-scale 
ratios is 

The number of eddies at level n is N ,  = m". For random length scales, the fractal 
dimension D is no longer given by equation (4). Rather, we study the partition function 

z.(q) = /;q( i=, 5 / : ( i ) )  (8) 

where ( )  denotes the average over all configurations of length scales. In the limit of 
large n this defines a 'free energy' 

F ( q ) = - l i m  "+Cz n- ' log ,Z , (q) .  ( 9 )  

For the @-model, Z.(q)  = m"2-"' , and F ( q )  is linear, F ( q ) = ( q - D ) / D  (here D =  

The dimension D is given implicitly by F(D)=O.  Since 1. has a multinomial 
(m-nomial) distribution in the factors r , ,  r , ,  . . . , r,, it follows that I :  has an m-nomial 
distribution in the factors r:, r z , .  . . , r',. Therefore, 

log2 m). 

Z , ( q ) =  JYq)  (10) 

where 

I ( q )  9 ( r : +  r: +. , .+ r : ) P ( r )  dmr. I, 
By symmetry, (1  1)  reduces to 

The free energy is by definition (cf equation (9)) F ( q )  = -log, I ( q ) ,  thus D is deter- 
mined by$ 

l ( D ) = l .  (13) 

I ( q )  is a decreasing function of q. Moreover, I ( O ) =  m, and by equation ( 6 ) ,  I ( 3 ) q  I ;  
we then have O S D S 3 .  Note that D=O only when m = l ,  and D = 3  only when 
P ( r ) = 8 ( r - m - ' %  

t The distribution P ( r )  musf be zero outside the unit interval and non-zero for at least one value of r below 
m-1/3, 

i In correspondence with the random 8-model [SI, one can include a variable m given by a probability 
distribution p ( m ) .  In this case, D is obtained as the solution of Il,*, [ I , , , iq) lp ' ""= I ,  where l , , ,(q) is the 
value of l ( p )  for a specific value of m. 
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Although an entire spectrum of exponents F ( q )  is necessary to fully describe the 
length-scale struture, the average behaviour of the velocity differences depends only 
on the dimension D. More precisely, the energy transfer from level n to level n + 1 is 

and based on a constant value for E, this leads to the scaling behaviour (1) with h 
again given by ( 5 ) .  

For the P-model, 11 is a simp\e function of m, h(m)=flog,(m/4), 4 s  m s 8 .  For 
our class of models, D ( m )  and therefore h(m) are generally more complicated. 
Consider, for example, the distributions P(r )= (y+ l ) r ’ ,  for 0 < r S  1, y > - l .  Then, 

which can be integrated to yieldt 

where r ( x )  is the gamma function. 
D is determined by solving equation (13). Figure 2 shows D for the cases y = 0, 1 

and 1 S m 5 10 (also shown in D ( m )  for the @-model). Since increased values of y 
give more weight to large values of r, the fractal dimension will likewise increase. 
Furthermore, the dimcnsion D increases with m, and at large m, D approaches the 
value 3 with an asymptotic behaviour 

9 
D = 3 -  

( y +  I ) (m In m)’  

3 -  

- 

2 -  

D -  

1 -  

- 

2 4 6 8 10 
0 
0 

m 
Figure2. Fractal dimension D determined forvariousvaluesof m. (-): P ( r ) -  1. ( - - - I :  
P ( r )  = 2 r .  (. ’ .I: 8-model. 

- 
t The integrals are facilitated by a change of variables from r, to U,  m r,I+ ( j  = 1 . 2 . .  . . , m), where 
x i =  ( 1  - r : - .  . .-()“’, xo- I .  Note that x, = + , ( I  - U:)”’. 
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To connect the above analysis to experiment we must find the relation between Re 
and m. First notice that the Reynolds number scales with the dissipation scale ld [3], 

~ ~ - / ; ( h + ' ) .  (18) 

Id sets the smallest possible length scale for an active eddy, and (18) follows from 
comparing the 'turnover' time /Ju* with the dissipation time /:/U-/: Re ( v  is the 
viscosity). Now, to relate I ,  to m we invoke the 'maximum-entropy' principle: An 
active eddy splits into as many active eddies as possibly allowed by P( r ) .  In  fact, P ( r )  
places severe constraints on m. One ohvious constraint is that m cannot grow larger 
than r;:", where rmi, = inf{r/P(r) # 0} (for the 6-model, rmi, = 4). But even when rmi, = 0, 
m is effectively bounded because large values of m create length scales almost all of 
which are smaller than /,,, in contradiction with the requirement that active eddies be 
formed. To fulfil this requirement, the probability of creating m active eddies must be 
of order 1, 

J P(r)d '"r=O(I)  (19) 

where S(f,) is the part of S with rj> I, for all j. m(Re) is then defined as the largest 
value of m for which condition (19) is satisfied. To make the definition rigorous, IT( 1) 
must be replaced by a constant (say, f ) .  

For the P-model, equation (19) gives a sharp transition from laminar flow to 
space-filling turbulent flow (m = 8) at a critical Reynolds number for which Id=;. For 
our power-law distributions, (19) gives the scaling relation 

% I " )  

(7-0) 

(21) 

- /;(?tll 

Using this and the scaling law (18), we end up with 
R ~ -  m ( h + l ) / ( y + l l  

To compare our theory with experiment (figure I ) ,  we make m a real variable, and 
determine the proportionality factor in (21) by setting Re = Re, at the value m, defined 
by D(mJ = 2. The curves in figure 1 show the h(Re) functions obtained from equations 
(S), (13), (16) and (21) for y = a  and y=$ .  (The significant variation of h(Re) with y 
stems from the explicit y-dependence in  equation (21).) We conclude that for both 
pipe and grid flows the data are well described by the/theoretical h curves, in the y 
regime [a, f]. No relation between the form of P (r)'and the Navier-Stokes equations 
has been established thus far. It may be possible to obtain such a relation through 
computational studies of the temporal development of bursts [ 6 ] ,  and we urge studies 

Note that the 'two-point' homodyne experiments differ from the usual 'one-point' 
Doppler velocimetry which measures the local velocity [4]. Adopting the frozen- 
turbulence assumption that velocity changes in time translate to velocity differences 
in space, a velocity-difference distribution can be obtained from the latter experiment. 
This differs from that obtained through homodyne spectroscopy, as the velocities will 
=be weighted by their occurrence. The exponent for the spatially-averaged moments 
u4(1 )  of the velocity-difference distribution is denoted C,, 

:.. .I.... 2: ---. :-.. 
111 L U a L  "IICCLLVII. 

- 
uyI) - / '" .  (22) 

For the p-model, the active eddies at level n are weighted by a factor p", and 
5, = hq -log, p. In terms of the fractal dimension, we have from equations (3) and (S), 

i q = f [ ( 9 - z q ) - ( 3 - q ) ~ j .  (23) 
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The same expression is obtained in our class of models, where the moments of the 
velocity-difference distribution are given by 

By I , ( ; ) =  / we refer to a region of width I, around 1. The choice affects only prefactors, 
not the exponents I,. To obtain equation (23), differentiate the sum in (24) with respect 
to /(U. - /!): PI-dtct,,ci,,t/~+hq = /3+hq Pt-dt<l,,,jls, 1. The last sum is the derivative of the 
total number N ( / )  of intervals larger than 1. The result (23) for l,, follows because 
N ( / ) - / - D .  In contrast to  the behaviour of h, we note that when q is less than 3, the 
exponent decreases with D. Preliminary experimental data have confirmed this 
behaviour for q = 2 [7]. 

In summary, we have analysed a random-cascade model of turbulence, where the 
length scales are determined from a probability distribution P (  r )  of length-scale ratios. 
We have studied a class of models where this distribution is power-law and have found 
exact expressions for the fractal dimension D and the velocity-field exponents, h and 
&, of the turbulent flow. Our model suggests a scenario for turbulence where an 
increase in Reynolds number leads to an increase in the splitting of active eddies 
which, in turn, increases the degree to which turbulence fills space. This scenario 
provides a quantitative explanation for the experimentally observed increase of h and 
decrease of CZ with increasing Reynoids number. 
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